Corde vibrante avec conditions initiales.

Problématique : Une corde vibrante est tendue entre les abscisses x = 0 et $x = \ell$; ses extrémités sont immobiles; on lui donne à l'instant initial t = 0 une forme connue y(x,0) (avec bien sûr, $y(0,0) = y(\ell,0) = 0$) et on la lache, à cet instant, avec une vitesse partout nulle. Quelle est la forme de la corde à un instant quelconque? C'est-à-dire quelle est la fonction y(x,t)?

Approche par la décomposition de Fourier : On peut considérer y(x,0), définie entre 0 et ℓ , comme restriction d'une fonction f(x) impaire (il faut pour cela f(0) = -f(0) donc f(0) = 0 mais c'est le cas) et périodique de période 2ℓ (il faut pour cela $f(\ell) = f(\ell-2\ell) = f(-\ell) = -f(\ell)$ donc $f(\ell) = 0$ mais c'est le cas). La décomposition en séries de Fourier ne comporte donc que des termes impairs en sinus, soit :

$$y(x,0) = \sum_{k=1}^{\infty} B_k \sin\left(k\pi \frac{x}{\ell}\right)$$

où les B_k sont calculés à partir de la fonction supposée connue y(x,0) prolongée en f(t) par :

$$B_k = \frac{1}{\ell} \int_{-\ell}^{\ell} f(x) \sin\left(k\pi \frac{x}{\ell}\right) dx = \frac{2}{\ell} \int_0^{\ell} f(x) \sin\left(k\pi \frac{x}{\ell}\right) dx = \frac{2}{\ell} \int_0^{\ell} y(x,0) \sin\left(k\pi \frac{x}{\ell}\right) dx$$

en faisant bien attention qu'on doit calculer par intégration sur une période donc avec f entre $-\ell$ et ℓ et on se ramène à y, définie entre 0 et ℓ , en exploitant les parités. En fin d'exercice, on donnera le résultat de cette intégration dans un cas particulier.

Ce raisonnement est valable à tout instant, à ceci près qu'il faut comprendre que, quand t varie, la fonction y change, donc sa décomposition aussi, donc les coefficients de cette décomposition. On peut donc écrire :

$$y(x,t) = \sum_{k=1}^{\infty} b_k(t) \sin\left(k\pi \frac{x}{\ell}\right)$$

y est solution de l'équation de d'Alembert $\frac{\partial^2 y}{\partial t^2} = c^2 \frac{\partial^2 y}{\partial x^2}$. En y reportant l'expression précédente et en regroupant les termes (aux mathématiciens de justifier que ça reste valable avec la somme d'une infinité de termes) :

$$\sum_{k=1}^{k=\infty} \left(b_k''(t) + \frac{k^2 \pi^2 c^2}{\ell^2} b_k(t) \right) \sin\left(k \pi \frac{x}{\ell}\right) = 0$$

et, puisque la philosophie de la décomposition en série de Fourier est que les $\sin\left(k\,\pi\,\frac{x}{\ell}\right)$ forment une famille libre, leurs coefficients sont tous nuls, soit :

$$\forall k \qquad b_k''(t) + \frac{k^2 \pi^2 c^2}{\ell^2} b_k(t) = 0$$

d'où b_k est fonction sinusoïdale du temps de pulsation $k \pi c/\ell$, notons :

$$b_k(t) = \alpha_k \cos\left(k\pi \frac{ct}{\ell}\right) + \beta_k \sin\left(k\pi \frac{ct}{\ell}\right)$$

d'où

$$y(x,t) = \sum_{k=1}^{\infty} \left(\alpha_k \cos\left(k\pi \frac{ct}{\ell}\right) + \beta_k \sin\left(k\pi \frac{ct}{\ell}\right) \right) \sin\left(k\pi \frac{x}{\ell}\right)$$

et

$$\frac{\partial y}{\partial t} = \sum_{k=1}^{k=\infty} \frac{k \pi c}{\ell} \left(-\alpha_k \sin\left(k \pi \frac{ct}{\ell}\right) + \beta_k \cos\left(k \pi \frac{ct}{\ell}\right) \right) \sin\left(k \pi \frac{x}{\ell}\right)$$

dont on aura besoin un peu plus loin.

Utilisons les deux dernières expressions à l'instant initial t = 0 pour les identifier aux conditions initiales mentionnées plus haut.

$$y(x,0) = \sum_{k=1}^{k=\infty} \alpha_k \sin\left(k\pi \frac{x}{\ell}\right) = \sum_{k=1}^{k=\infty} B_k \sin\left(k\pi \frac{x}{\ell}\right)$$

$$\frac{\partial y}{\partial t}(x,0) = \sum_{k=1}^{k=\infty} \frac{k \pi c}{\ell} \beta_k \cos\left(k \pi \frac{ct}{\ell}\right) \sin\left(k \pi \frac{x}{\ell}\right) = 0 \quad \text{vitesse partout nulle}$$

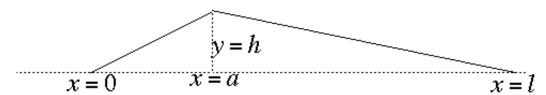
là encore, puisque les $\sin\left(k\pi\frac{x}{\ell}\right)$ forment une famille libre, on en déduit, pour tout k que $\alpha_k=B_k$ (rappelons que les B_k sont connus) et $\beta_k=0$ et donc

$$y(x,t) = \sum_{k=1}^{\infty} B_k \cos\left(k\pi \frac{ct}{\ell}\right) \sin\left(k\pi \frac{x}{\ell}\right)$$

La solution est parfaitement définie comme limite d'une «série de fonctions» ; même si son aspect est rebutant, c'est la solution et l'on peut être heureux. On verra toutefois une autre approche qui donnera une expression plus «lisible» de ce résultat.

Exemple d'application : Où attaquer la corde pour un son harmonieux?

L'idée est que la théorie de la musique a habitué nos oreilles aux harmoniques de rang 2, 3 et 5 et leurs multiples communs. Le premier harmonique qui soit donc discordant est l'harmonique 7. Cherchons donc à l'annuler.



A l'instant initial, on écarte d'une distance h le point de la corde d'abscisse a; entre ce point et ses deux extrémités, la corde est tendue. On en tire donc aisément l'équation de y(0,t), affine par morceaux :

$$y(x,0) = \begin{cases} h \frac{x}{a} & \text{si } 0 < x < a \\ h \frac{\ell - x}{\ell - a} & \text{si } 0 < x < a \end{cases}$$

d'où, en abrégeant

$$B_k = \frac{2}{\ell} \int_0^\ell y(x,0) \sin\left(k\pi \frac{x}{\ell}\right) = \frac{2h}{\ell a} \int_0^a x \sin\left(k\pi \frac{x}{\ell}\right) dx + \frac{2h}{\ell(\ell-a)} \int_a^\ell (\ell-x) \sin\left(k\pi \frac{x}{\ell}\right) dx$$

οù

$$\begin{split} \int_0^a x \sin\left(k\,\pi\,\frac{x}{\ell}\right) \,\mathrm{d}x &= \int_0^a x \,\mathrm{d}\left(-\frac{\ell}{k\,\pi}\,\cos\left(k\,\pi\,\frac{x}{\ell}\right)\right) = \\ \left[-\frac{\ell}{k\,\pi}\,x\,\cos\left(k\,\pi\,\frac{x}{\ell}\right)\right]_0^a &+ \int_0^a \frac{\ell}{k\,\pi}\,\cos\left(k\,\pi\,\frac{x}{\ell}\right) \,\mathrm{d}x = \left[-\frac{\ell}{k\,\pi}\,x\,\cos\left(k\,\pi\,\frac{x}{\ell}\right) + \frac{\ell^2}{k^2\,\pi^2}\,\sin\left(k\,\pi\,\frac{x}{\ell}\right)\right]_0^a = \\ &- \frac{\ell}{k\,\pi}\,a\,\cos\left(k\,\pi\,\frac{a}{\ell}\right) + \frac{\ell^2}{k^2\,\pi^2}\,\sin\left(k\,\pi\,\frac{a}{\ell}\right) \end{split}$$

et dans la seconde intégrale, le changement de variable $x=\ell-\xi$ d'où d $x=-\mathrm{d}\xi$ donne

$$\begin{split} \int_{a}^{\ell} (\ell - x) \sin \left(k \, \pi \, \frac{x}{\ell} \right) \, \mathrm{d}x &= - \int_{\ell - a}^{0} \xi \, \sin \left(k \, \pi - k \, \pi \, \frac{\xi}{\ell} \right) \, \mathrm{d}\xi = \\ \int_{0}^{\ell - a} \xi \, \sin \left(k \, \pi - k \, \pi \, \frac{\xi}{\ell} \right) \, \mathrm{d}\xi &= (-1)^{k} \int_{0}^{\ell - a} \xi \, \sin \left(-k \, \pi \, \frac{\xi}{\ell} \right) \, \mathrm{d}\xi = (-1)^{k+1} \int_{0}^{\ell - a} \xi \, \sin \left(k \, \pi \, \frac{\xi}{\ell} \right) \, \mathrm{d}\xi = \\ (-1)^{k+1} \left(-\frac{\ell}{k \, \pi} \, (\ell - a) \, \cos \left(k \, \pi \, \frac{\ell - a}{\ell} \right) + \frac{\ell^{2}}{k^{2} \, \pi^{2}} \, \sin \left(k \, \pi \, \frac{\ell - a}{\ell} \right) \right) = \cdots \end{split}$$

où la dernière égalité se déduit par analogie avec le calcul précédent en remplaçant a par $\ell-a$; poursuivons :

$$\cdots = (-1)^{k+1} \left(-\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi - k\pi \frac{a}{\ell} \right) + \frac{\ell^2}{k^2 \pi^2} \sin \left(k\pi - k\pi \frac{a}{\ell} \right) \right) = \\
(-1)^{k+1} \left((-1)^{k+1} \frac{\ell}{k\pi} (\ell - a) \cos \left(-k\pi \frac{a}{\ell} \right) + (-1)^k \frac{\ell^2}{k^2 \pi^2} \sin \left(-k\pi \frac{a}{\ell} \right) \right) = \\
(-1)^{k+1} \left((-1)^{k+1} \frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + (-1)^{k+1} \frac{\ell^2}{k^2 \pi^2} \sin \left(k\pi \frac{a}{\ell} \right) \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell^2}{k^2 \pi^2} \sin \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell^2}{k^2 \pi^2} \sin \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell^2}{k^2 \pi^2} \sin \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell^2}{k^2 \pi^2} \sin \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell^2}{k^2 \pi^2} \sin \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell^2}{k^2 \pi^2} \sin \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell^2}{k^2 \pi^2} \sin \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell^2}{k^2 \pi^2} \sin \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell^2}{k^2 \pi^2} \sin \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell^2}{k^2 \pi^2} \sin \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell^2}{k^2 \pi^2} \sin \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell^2}{k^2 \pi^2} \sin \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell^2}{k^2 \pi^2} \sin \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell^2}{k^2 \pi^2} \sin \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell^2}{k^2 \pi^2} \sin \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) + \frac{\ell}{k\pi} (\ell - a) \cos \left(k\pi \frac{a}{\ell} \right) = \\
\frac{\ell$$

puis on reporte le résultat des deux intrégrations dans l'expression de B_k , les termes en cosinus se simplifient et il vient :

$$B_k = \frac{2h\ell}{k^2\pi^2} \left(\frac{1}{a} + \frac{1}{\ell - a}\right) \sin\left(k\pi\frac{a}{\ell}\right)$$

et en particulier

$$B_7 = \frac{2h\ell}{49\pi^2} \left(\frac{1}{a} + \frac{1}{\ell - a}\right) \sin\left(7\pi\frac{a}{\ell}\right)$$

Pour annuler B_7 il suffit d'attaquer la corde par exemple en $a = \ell/7$.

Certes, il restera des harmoniques faux, par exemple l'harmonique 11 mais son amplitude sera pratiquement négligeable car B_k varie avec k en $1/k^2$.

Approche par décomposition en ondes progressives en sens inverse : On cherche donc une solution en

$$y(x,t) = f(x-ct) + g(x+ct)$$

qui est automatiquement solution de l'équation de d'Alembert. Ne reste qu'à vérifier les conditions aux limites et les conditions initiales.

On connaît y(x,0) entre x=0 et $x=\ell$, on doit donc avoir f(x)+g(x)=y(x,0).

Comme $\frac{\partial y}{\partial t} = -c f'(x - c t) + c g'(x + c t)$ et que $\frac{\partial y}{\partial t}(x, 0)$ entre x = 0 et $x = \ell$, on doit donc avoir c(f'(x) - g'(x)) = 0.

La seconde relation entraı̂ne que entre x=0 et $x=\ell$, g(x)-f(x) est une constante qu'on note provisoirement K et la première conduit donc à

$$f(x) = \frac{1}{2}y(x, o) - \frac{K}{2}$$
 $g(x) = \frac{1}{2}y(x, o) + \frac{K}{2}$

La détermination de K est un faux problème car nous cherchons l'expression de y(x,t), somme de f(x-ct) et de g(x+ct), somme dans laquelle K disparaît; la valeur de K est donc arbitraire et le plus simple est donc de la prendre nulle. A ce stade f(x) = g(x) = y(x,0)/2 pour x compris entre 0 et ℓ . Il est raisonnable d'espérer qu'en dehors de cet intervalle, on ait toujours f(x) = g(x) et donc que y(x,t) = f(x-ct) + f(x+ct);

Passons aux conditions au limites. On veut y(0,t)=0, il en résulte que f(-ct)+f(ct)=0 donc que f est impaire; on connaissait f entre 0 et ℓ , on le connait donc par parité entre $-\ell$ et ℓ .

On veut $y(\ell,t) = 0$ donc $f(\ell-ct) + f(\ell+ct) = 0$, soit encore en utilisant la parité $f(-\ell+ct) = f(\ell+ct)$ donc f est 2ℓ -périodique, ce qui la définit totalement puisqu'on connaît déjà f sur un intervalle de largeur égale à la période.

Graphiquement, on dessine y(x,0) entre 0 et ℓ , on complète par symétrie et périodicité, on décale d'une part de ct, d'autre part de -ct et on «fait» la demi-somme des courbes obtenues pour aboutir au graphe de y(x,t).

Par exemple:

